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1. Introduction

The Gurney equations (1)provide an estimation of the velocities of fragments from an detonating

charge. The equations derive from the principles conservation of energy and momentum applied

to the gases produced by the detonation and the shell surrounding the charge. The equations

assume the fragments travel in one dimension (e.g., radially in the case of a cylinder).

Tie-peng et al. (2) recently demonstrated an extension to the Gurney equations for the case of a

cylindrical charge surrounded on the sides by a metal shell and with metal plates on top and

bottom. The Tie-peng et al. result assumes the detonation wave reaches the top and the

surrounding shell at the same time regardless of the radius and height of the cylinder. This

necessitates the assumption that the acceleration of the gases due to the explosion is not uniform

in all directions.

In this work, we adopt a different approach by assuming the acceleration of the gas due to the

explosion is uniform. We then work out a different version of the Gurney equations for the

cylindrical charge described. The resulting equations may be simpler to use than the Tie-peng et

al. as they do not rely upon quantities that are difficult to measure, such as the pressure on the

plates and sides.

Section 2 provides some background material on the Gurney equations. Section 3 then describes

the extension to the equations. We finish by providing some concluding remarks in section 4.

2. Background: Derivation of the Gurney Equations

This section provides background material on the Gurney equations. In particular, we show the

derivation for specific geometries of interest. Readers who are already familar with the Gurney

equations may skip this section.

The Gurney equations are based on some simple assumptions and modeling. Initiating the charge

results in a detonation wave that moves outward generating gaseous combustion products that

flow along behind it. Upon contact with the casing, the gases (e.g., combustion products) force

the casing to fragment and then push the fragmets outward with some velocity. The Gurney

equations ignore the work done on the casing to cause the fragmentation. Instead, the casing
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(and all fragments) are assumed to go outward at the same velocity as the gases when contact was

made.

We obtain the velocity of the fragments by applying conservation of energy and, where

applicable, conservation of momentum to the gases and casings. Importantly, we assume that all

of the chemical potential energy in the explosion goes into the kinetic energy of the fragments and

combustion products. This ignores the work done on the casing to cause fragmentation, as well

as the increased internal energy of the explosive, but allows for a closed form estimate.

2.1 Cylindrical Charge

Let us now consider a simple cylindrical charge with radiusR surrounded on the sides by a thin

metal casing. The charge has a mass per unit length ofC. The casing has a mass per unit length

of Ms. Figure 1 shows the example charge.

Figure 1. Diagram of a cylindri-
cal explosive charge sur-
rounded by a thin shell of
massMs.

To simplify the geometry, we require the detonation wave to start uniformly along the center line

of the cylinder (e.g.,r = 0) at the same time. The detonation wave will then expand outward in

all directions, enforcing azimuthal symmetry. We make the additional assumption that the

detonation wave has no significant effects in the ˆz direction. In section 3, we show how to relax

this assumption. With these simplifications, the problem reduces to the radial direction only.

To find the velocity of the fragments, we enforce conservation of momentum and energy. Due to

the azimuthal symmetry, conservation of momentum provides no useful information as

momentum is trivially conserved. We thus turn our attention to conservation of energy by

computing the total kinetic energy and equating to the chemical energy stored in the explosive.

The blast wave accelerates gases outward. We take the velocity of the gases when they reach the
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shell to bevs. The blast then fragments the shell and pushes the fragments outward. We will

assume the fragments move at the same velocity as the gases, i.e.,vs. The total kinetic energy of

the fragments is then(1/2)Msv2
s .

The gases also have kinetic energy, which must be accounted for. The blast begins at the center

axis, where the velocity of the gases would be 0. The gases reach a maximum velocity ofvs at

the shell. We therefore assume the velocity of the gases varies linearly with position, e.g.,

v(r) =
r
R

vs (1)

whereR is the radius of the cylinder. Takingρ =C/πR2 to be the density of the charge, we can

compute the kinetic energy (per unit length) of the charge products,Tc, as

Tc =
1
2

∫ R

0
2πρrv2(r)dr

=
1
2

2πρv2
s

∫ R

0

r3

R2 dr

Tc =
1
2

C
2

v2
s (2)

Let E denote the chemical energy per unit mass for the particular explosive being used. The total

chemical energy per unit length of the explosive is given byEC. Following Gurney (1), we

assume the total chemical energy available in the explosive converts entirely to kinetic energy.

This provides us with the required relation to determinevs,

EC =
1
2

Msv
2
s +

1
2

C
2

v2
s

2E = v2
s

(

Ms

C
+

1
2

)

vs =
√

2E
√

α α−1 ≡ Ms

C
+

1
2

(3)

The constant
√

2E, which has units of velocity, is commonly referred to as Gurney’s Constant and

varies with the explosive used. All of the Gurney equations take the form of equation 3. The

equations differ only with the definition ofα.

If we substantially increaseMs, then equation 3 predicts the fragments would move outward with

smaller velocity, which agrees with intuition. Interestingly, equation 3 predicts an asymptotic

maximum speed of
√

2
√

2E for fragments as the amount of explosive is increased.
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2.2 Sandwich Charge

Another useful example is a sandwich charge, where two flat plates, with masses per unit area of

M1 andM2, are separated by a charge mass per unit areaC. If M1 = M2, then the entire package

is referred to as a symmetric sandwich charge. If the two masses are not equal, the package is a

asymmetric sandwich charge. The general case is shown in figure 2.

Figure 2. Sandwich charge config-
uration. If M1 = M2, the
charge is referred to as
a ‘symmetric sandwich
charge’. Otherwise, the
charge is an ‘asymmetric
sandwich charge’ .

For convenience, we orient the charge and plates so that the blast would send the plates in the

vertical (“ŷ”) direction. Again, we reduce the problem to one dimension by assuming the

velocity of gaseous combustion products are insignificant in the ˆx direction.

As the blast wave goes outward, the gases imparts a velocityv1 to theM1 plate and a velocity−v2

to theM2 plate (minus sign added because theM2 plate will move in the opposite direction ofM1).

We assume the velocity of the explosion products varies linearly in the ˆy direction. We thus have

v(y) = (v1+ v2)
y
H

− v2 (4)

whereH is the height of the charge.

The problem is to determine the velocities,v1 andv2. As before, we apply conservation of

momentum and energy to obtain the required relations

From conservation of momentum, we have

0= M1v1−M2v2+
∫ H

0
ρv(y)dy, (5)
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whereρ =C/H is the mass density. From this, we obtain the first relation,

v2 = Av1 A ≡ 1+2(M1/C)

1+2(M2/C)
. (6)

The kinetic energy relation is

EC =
1
2

M1v2
1+

1
2

M2v2
2+

1
2

∫ H

0
ρv2(y)dy (7)

Carrying out the computation, using equation 6 and noting that 1−A+A2 = (A3+1)/(A+1),

we arrive at the Gurney equation,

v1 =
√

2E
√

α1 (8)

α−1
1 ≡ M1

C
+A2M2

C
+

1
3

A3+1
A+1

We can compute some interesting limits from equation 8. If the masses of the plates are equal,

then we obtain the symmetric sandwich equation with

α−1
1 = 2

M1

C
+

1
3
. (9)

Another interesting limit occurs when one of the plates is not present (the “open face” sandwich).

For convenience, we pickM2 = 0 so there is no bottom plate. In this case,v2 then becomes the

velocity gas exiting from below the charge. We obtain

α−1
1 =

(1+2M1
C )3+1

6(1+ M1
C )

+
M1

C
(10)

The last limit of interest occurs when we allow one of the plates, sayM2, to have substantially

large mass, e.g.,M2 → ∞. If we apply this limit to equation 8, we find thatv1 =
√

2E
√

α1 with

α−1
1 =

M1

C
+

1
3

(11)

The result is correct, but only by coincidence as there is a subtle inconsistency. The problem lies

in applying conservation of momentum. For a plate of infinite mass, the bottom plate does not

move (v2 = 0), nor do gases from the explosion escape from the bottom. As a result,

conservation of momentum, equation 5, would imply thatv1 = 0 for this case, which is
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inconsistent with equation 11. Since the bottom plate is not moving, momentum is not conserved

which gives rise to this inconsistency (the bottom plate basically provides an external force on the

system). The proper way of handling this limit is to takev2 = 0 in the kinetic energy relation,

equation 7. We would then obtain equation 11.

2.3 Limitations and Discussion

Generally, the Gurney equations consider one dimension only by considering “ideal” charge

configurations. The “ideal” configurations impose some symmetry condition and have infinite

length allowing edge effects to be ignored. Some of these limitations can be relaxed. Edge

effects can be accounted for by adjusting theM/C ratio (3) or by introducing correction terms (4).

Symmetry conditions could be relaxed, but at the expense of dramatically increased complexity.

All of the Gurney equations depend on the constant
√

2E, which must be measured for each

explosive.
√

2E can be measured either by empirically fitting the Gurney equations or through

calormetric means (5). The computated velocities obviously depend on the quality of the

measurement of the constant.

The main advantage of the Gurney equations lie in their simplicity. The equations can quickly be

derived and can provide good estimates of the fragment velocities. There may be compensating

errors present in the analysis. The energy required to fragment the casing is ignored, which

should cause the equations to over estimate the fragment velocities. On the other hand, using

simple velocity profiles that vary linearly can underestimate the actual velocities of the

combustion products. Actual detonations cause shocks to develop which will cause combustion

products to move faster than a simple linear fit.
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3. Extension to the Gurney Equations

Here we discuss our extension to two dimensions for the cylindrical charge described in section 1.

The geometry of the problem incorporates both the cylinder and the asymmetric sandwich

problems discussed in section 2.

We now move to two dimensions. The charge configuration is shown in figure 3. The charge has

a radius ofR, and height ofH. At z = 0, we attach a plate of massM2. A second plate of mass

M1 is attached atz = H. A metal shell of massMs surrounds the charge.

For this case, we assume the detonation point is located along the center axis (r= 0). This

provides azimuthal symmetry. The height of the detonation point is determined by velocity

profile imposed on the combustion products.

Figure 3. Cross section of the cylindrical charge
considered for this work. The charge
has a radius ofR and height ofH. Two
plates with massesM1 andM2 attach to
the top and bottom of the charge. Ad-
ditionally, the charge is surrounded by
a metal shell with massMs .
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Our problem is to compute the velocity of fragments,v1, v2, andvs, created from the plates and

shell given the masses of the plates,M1 andM2, the mass of the shell,Ms, the mass of the

explosive,C, and the Gurney Constant for the explosive,
√

2E.

As before, we assume the blast pushes gases outward with a velocity that varies linearly. In the

radial direction, the velocity varies with distance from the center line. Along the height of the

cylinder, the velocity varies linearly between−v2 andv1. Combining these, we have

v(r,z) =
r
R

vsr̂+
[

(v1+ v2)
z
H

− v2

]

ẑ (12)

With this velocity profile, we can examine conservation of momentum. In the radial direction,

momentum is trivially conserved and provides no useful relations. In the ˆz direction, however,

we obtain

0= M1v1−M2v2+
∫ R

r=0

∫ H

z=0
2πρr

[

(v1+ v2)
z
H

− v2

]

dr dz

which gives our first relation,

v2 = Av1 A ≡ 1+2(M1/C)

1+2(M2/C)
(13)

The kinetic energy relation is

CE =
1
2

M1v2
1+

1
2

M2v2
2+

1
2

Msv
2
s +

1
2

∫ R

r=0

∫ H

z=0
2πρr|v(r,z)|2dr dz (14)

which, combined with equation 13, gives the second relation among the velocities,

2E =

(

M1

C
+A2M2

C
+

1
3

A3+1
A+1

)

v2
1+

(

Ms

C
+

1
2

)

v2
s (15)

We clearly see that the first term on the right hand side of equation 15 corresponds to the Gurney

equation for an asymmetric sandwich, while the second term corresponds to the cylinder charge.

If we takeMs → ∞, which requiresvs → 0, then we obtain the Gurney equation for the

asymmetrical sandwich. If we repeat the process for the limits ofM1,M2 → ∞, we recover the

Gurney equation for the cylindrical charge.
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If we empirically know eitherv1 or vs, then equation 15 may be used to obtain the other.

However, we can make no further analytic progress without additional assumptions.

3.1 Relating v1 to vs

One approach to relatev1 andvs is to assume the detonation wave accelerates the gases uniformly

in all directions. The gases will, in general, reach the shell and the plates at different times. Ifa

is the acceleration, we can compute the velocity and distances the gases travel as

vs = ats and R =
1
2

at2
s (16)

for the radial direction. This implies

a =
1
2

v2
s

R
. (17)

In the axial direction, the distance traveled is dependent on the location of the detonation point.

For symmetry reasons, we assumed the detonation point was located along ther = 0 line. We can

locate the axial location by computing wherevz = 0 from the velocity profile given in equation 12,

vz(z0) = 0= (v1+ v2)
z0

H
− v2 (18)

z0 =
v2

v1+ v2
H =

A
1+A

H (19)

where equation 13 was used.

The gases cover a distance ofH − z0, which can then be used to write down

v1 = at1 and
1

1+A
H =

1
2

at2
1 (20)

which implies

a =
1+A
2H

v2
1. (21)

Equating equations 17 and 21, we obtain the needed relation betweenv1 andvs,

v2
1 =

H
R

1
A+1

v2
s . (22)
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Substituting equation 22 back into equation 15 provides us the equation forvs,

vs =
√

2E
√

αs α−1
s ≡ 1

A+1

(

M1

C
+A2M2

C
+

1
3

A3+1
A+1

)

H
R
+

(

Ms

C
+

1
2

)

(23)

Using this with equations 13 and 22 gives the other velocities,

v1 =
√

2E
√

α1 α−1
1 ≡

(

M1

C
+A2M2

C
+

1
3

A3+1
A+1

)

+(A+1)

(

Ms

C
+

1
2

)

R
H

(24)

v2 =
√

2E
√

α2 α−1
2 ≡ 1

A2

(

M1

C
+A2M2

C
+

1
3

A3+1
A+1

)

+
A+1

A2

(

Ms

C
+

1
2

)

R
H

(25)

We may take limits of these equations, but doing so requires careful interpretation. All the

speeds depend, in some fashion, on the height to radius ratio,H/R. WhenH ≪ R, the problem

geometry becomes two plates sandwiched around a layer of charge. We may expect that the

equations would then reduce to the sandwich equations shown in section 2. However, equations

23, 24, and 25 emphasize the cylindrical charge equation instead. The reason for the seemingly

contradictory limit lies in the assumptions used to obtain a relationship betweenv1 andvs. We

assumed that the blast wave accelerates the gases uniformly. IfH ≪ R, then the gases in the ˆz

direction have far less time to be accelerated before they encounter the plates than the gases in the

radial direction. As a result, most of the available energy will go into the fragments from the

shell. Hence, the cylindrical charge should be emphasized. When considering limits of this

type, it may be better to apply the limits to the kinetic energy relation shown in equation 15.

3.2 Tie-peng et al. Method

Recently, Tie-peng et al. (2) examined this identical charge configuration, but with different

underlying assumptions. In particular, they obtain relations betweenv1 andvs by assuming the

detonation wave reaches the top plate and the surrounding shellat the same time. This

necessarily implies the acceleration of the gases due to the blast wave is not uniform in all

directions, but rather accelerates the gases differently in the ˆr andẑ directions.

We can obtain the accelerations by introducing the pressures on the top plate,P1, and the

surrounding shell,Ps. The definition of pressure immediately provide

P1 =
M1a1

πR2 Ps =
Msas

2πRH
(26)

Since Tie-peng et al. assumed the detonation wave reaches the plate and shell at the same time, we
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can immediately write

v1

vs
=

a1

as
=

Ms

M1

P1

Ps

R
2H

(27)

Using this relation in equation 15, we obtain the Tie-peng et al. result,

v1 =
√

2E
√

αt

α−1
t =

1
3

A3+1
A+1

+A2M2

C
+

M1

C

[

16
P2

s

P2
1

M1

Ms

H2

d2 +1

]

+8
P2

s

P2
1

M2
1

M2
s

H2

d2 , (28)

whered = 2R is the diameter of the cylinder.

The Tie-peng et al. approach and our approach utilize different underlying assumptions.

However, we note that whenH = 2R, andM1 = M2, the two methods should produce the same

result. M1 = M2 implies thatv1 = v2, and therefore the detonation point is at the center of the

cylinder. In the Tie-peng et al. procedure,H = 2R implies that the acceleration must be uniform

in all directions in order for the blast wave to hit the top and side at the same time. Within our

approach, the blast wave also hits the top plate and side shell at the same time for this

configuration.

WhenH = 2R (and recalling that, for this case,as = a1), we immediately find from equation 26,

Ps

P1
=

Ms

4M1
(29)

Due to the assumption thatM1 = M2, we must also have thatA = 1.

Putting all this into equation 28, we find

α−1
t =

1
3

A3+1
A+1

+A2M2

C
+

M1

C

[

16

(

Ms

4M1

)2 M1

Ms

H2

d2 +1

]

+8

(

Ms

4M1

)2 M2
1

M2
s

H2

d2

=

(

1
3
+

M2

C
+

M1

C

)

+

(

Ms

C
+

1
2

)

. (30)

which is identical to our result shown in equation 24 whenH = 2R andA = 1.
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3.3 Discussion of Differences and Limitations

The differences in the two procedures lie in how the third and final relation among the velocities

is determined. The Tie-peng et al. result assumes the blast wave accelerates gases in such a way

as to make the gases reach the top plate and the surrounding shell at the same time. This may not

be physically realistic as the blast wave should emanate from the detonation outward causing an

acceleration of the gases that is the same in all directions. The assumption of the same

acceleration in all directions underlies our approach. Furthermore, our approach may be simpler

to use as it does not rely upon the pressures on the plate and shell, which are difficult to measure

quantities.

At the same time, however, we note that both procedures ignore more complicated physics that

can happen when considering two dimensional flows from a detonation. In particular, once the

gases impact on the surface closest to the detonation point, the surface will cause some of the

gases to reflect back, or deflect into the other direction. Such a process would invalidate the

assumptions of both procedures. A more thorough investigation of the complex physics involved

is beyond the scope of this work.

Another limitation to note is that neither method handles cases where the radius is “much

different” than the height of the charge. For example, let us consider a charge whose height is

four times the radius. We (somewhat) arbitrarily place the detonation pointr = 0,z = R (e.g., one

quarter of the height). As the blast proceeds, the detonation wave will “fill” the bottom half of

the cylinder. That is, the detonation wave will reach the bottom plate and the lower half of the

surrounding metal shell at the same time. However, the top portion will remain unaffected at this

time. Effectively, the bottom portion of the charge will explode well before the top portion even

recognizes a detonation has occured. This case is not accounted for in the Gurney style methods

and would likely require the use of hydrocodes for a proper analysis.

The most applicable cylindrical charge configuration for this method is one where the height is

twice the radius, a detonation point located at the center (e.g.,r = 0,z = H/2) and whose top and

bottom plates have the same mass. This configuration should avoid the limitations discussed in

the previous paragraph. The velocities of the fragments will then be given by equations 23, 24,

and 25. The velocity estimates may also be applicable whenH is not “too different” from 2R.

That is we may expect the velocity estimates given above will still be reasonable even ifH is

slightly larger than 2R. We feel that the estimates will certainly break down onceH gets near to

4R. Similarly, the estimates may hold ifH is decreased to values less than 2R, but will break

down again at some lower limit (perhapsH = R). Comparisons with hydrocodes would be useful

12



to determine the exact range of applicability.

4. Conclusion

In this work, we examined extensions to the Gurney equations for fragments that can travel in two

dimensions. Our work was based somewhat in the work of Tie-peng et al. , but with different

underlying assumptions. In particular, we assumed that the blast wave causes an accleration that

is the same in all directions. This results in a simple equation for the velocity fragments that

bears similarities to the usual cylindrical and sandwich Gurney equations.
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